Spektroskopische Untersuchungen zur Struktur von SiF₄ · 2 Amin-Addukten

Von

H. Bürger, W. Sawodny und F. Höfler

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Graz und dem Laboratorium für Anorganische Chemie der Technischen Hochschule Stuttgart

(Eingegangen am 3. Juli 1965)

Die Addukte von SiF₄ mit 2 Molekülen NH₃, ND₃, N₂H₄ und CH₃NH₂ wurden IR- und Raman-spektroskopisch untersucht. Schwingungsspektren, 19 F-Breitband-KMR und chemische Eigenschaften stehen mit einer cis-oktaedrischen Struktur im Einklang, in der vermutlich durch Dipol—Dipol-Wechselwirkungen einzelne Komplexmoleküle zu polymeren Einheiten zusammentreten.

Complexes of SiF₄ with 2 molecules of NH₃, ND₃, N₂H₄, and CH₃NH₂ were investigated by IR and Raman spectroscopy. The results as well as ¹⁹F broadline nmr and chemical properties support a *cis*-octahedral structure. Probably dipol—dipol interactions are responsible for the association of the complex molecule.

Im Gegensatz zu anderen Siliciumtetrahalogeniden reagiert SiF_4 mit Ammoniak, primären und sekundären Aminen nicht unter Substitution es bildet damit unlösliche, sublimierbare 1:2-Addukte. Obwohl $SiF_4 \cdot 2$ NH $_3$ die älteste SiN-Verbindung überhaupt ist 1 und alle SiF_4 -Addukte leicht aus SiF_4 und NH $_3$ bzw. primären, sekundären, tertiären Aminen oder auch Hydrazin in der Gasphase oder einem Lösungsmittel dargestellt werden können, liegt die Struktur dieser Moleküle noch weitgehend im Unklaren. Vermutlich ist ihre völlige Unlöslichkeit in allen gebräuchlichen Lösungsmitteln dafür verantwortlich, daß über ihre Eigenschaften nur wenig bekannt ist.

Alle diese Verbindungen zeichnen sich durch eine verhältnismäßig hohe thermische Beständigkeit aus. So dissoziiert $SiF_4 \cdot 2 NH_3$ unter

¹ J. Davy, Philos. Trans. **1812** I, 352.

Atmosphärendruck bei $185^{\circ 2}$ lediglich in SiF₄ und 2 NH₃ zurück. Bis hinauf zu Temperaturen von 900° wie auch in flüssigem NH₃² finden sich bei der Umsetzung von SiF₄ mit NH₃ keine anderen Reaktionsprodukte als das SiF₄ · 2 NH₃.

Die Eigenschaften der Addukte aliphatischer und aromatischer Amine sowie von N_2H_4 an SiF_4 entsprechen weitgehend denen des $SiF_4 \cdot 2$ NH_3 . $SiF_4 \cdot 2$ $N_2H_4^3$, das einzige Reaktionsprodukt im System SiF_4 — N_2H_4 , übertrifft in seiner thermischen Beständigkeit noch das NH_3 -Addukt, und seine Reaktion mit NH_3 und Äthylendiamin, die zu einem partiellen Ligandenaustausch führt, gibt seine Verwandtschaft zum $SiF_4 \cdot 2$ NH_3 deutlich zu erkennen.

Chemische Reaktionen

Außer den Ligandenaustauschreaktionen, der Spaltung von SiF $_4$ · $_2$ N $_2$ H $_4$ mit BF $_3$ in SiF $_4$ und BF $_3$ · N $_2$ H $_4$ sowie der Hydrolyse 2 , die zu (NH $_4$) $_2$ SiF $_6$, SiO $_2$, NH $_3$ und NH $_4$ F führt, wurden die chemischen Eigenschaften der SiF $_4$ -Addukte nicht weiter untersucht. Erst ihre Reaktion mit linearen und ringförmigen Silazanen 4 , die nach

$$SiF_4 \cdot 2 \text{ NH}_3 + 2 \text{ R}_3 SiNHSiR_3 \longrightarrow$$

$$\longrightarrow 2 \text{ R}_3 SiF + \text{R}_3 SiNHSiF_2 NHSiR_3 + 2 NH_3$$
(1)

und

$$\frac{x}{n+1} \operatorname{SiF}_4 \cdot 2 \operatorname{NH}_3 + (\operatorname{R}_2 \operatorname{SiNH})_x \longrightarrow \frac{x}{n+1} \operatorname{F}(\operatorname{SiR}_2 \operatorname{NH})_n \operatorname{SiR}_2 \operatorname{F} +$$

$$x \qquad \qquad 2 x$$

+
$$\frac{x}{y(n+1)}$$
 (F₂SiNH)_y + $\frac{2x}{n+1}$ NH₃ (x=3,4; n=0,1,2,3; R=CH₃) (2)

zu einer ganzen Reihe neuartiger fluorhaltiger Silicium—Stickstoff-Verbindungen führt, zeigt, daß sie keine reaktionsträgen oder chemisch inerten Substanzen sind, sondern mit geeigneten Partnern zu wertvollen Synthesen eingesetzt werden können.

Darüber hinaus geben diese Reaktionen Hinweise auf die Struktur der Addukte. Sowohl nach (1) als auch (2) zerfällt das $SiF_4 \cdot 2$ NH_3 in zwei Moleküle NH_3 , zwei F- und einen — SiF_2 —-Baustein. Dieses — SiF_2 —übernimmt dann entweder 2 R_3SiNH -Gruppen, die durch Trennung einer SiN-Bindung des $R_3SiNHSiR_3$ gebildet werden (1) oder tritt im Falle der Cyclosilazane (2) mit dem Spaltungsprodukt —NH— zu einer nicht flüchtigen, farblosen, hochpolymeren Substanz $(F_2SiNH)_y$ zusammen.

Beide Reaktionen legen den Schluß nahe, daß im $SiF_4 \cdot 2 NH_3$ je zwei verschieden gebundene F-Atome vorliegen, die unter den vielen

² D. B. Miller und H. H. Sisler, J. Amer. Chem. Soc. 77, 4998 (1955).

³ R. C. Aggarwal und M. Onyszchuk, Canad. J. Chem. 41, 876 (1961).

⁴ U. Wannagat und H. Bürger, Angew. Chem. **76**, 497 (1964).

möglichen Strukturen, von denen einige im folgenden wiedergegeben sind, (a), (d) oder (e) befürworten.

Spektroskopische Untersuchungen

Eine weitere Klärung der Struktur versprachen wir uns von einer eingehenden spektroskopischen Untersuchung der Verbindungen. Bisher sind vom $\mathrm{SiF_4} \cdot 2~\mathrm{NH_3}$ lediglich IR-Spektren im NaCl-Bereich bekannt geworden ^{3, 5, 6}. Aggarwal und Onyszchuk ³ schließen dabei aus der Aufspaltung einer bei 935/905 cm⁻¹ aufgefundenen Bande, die als SiN-Valenzschwingung angesprochen wird, auf eine cis-Struktur des Komplexes.

Da es ein wesentliches Ziel unserer Untersuchungen war, die SiN-Valenzschwingungen in SiF $_4 \cdot 2$ NR $_3$ -Addukten aufzufinden, um hieraus Valenzkraftkonstanten der koordinativen SiN-Bindung auszurechnen, und bereits eine Überschlagsrechnung — die mit 920 cm $^{-1}$ für vSiN bei cis-Struktur eine wenig wahrscheinliche SiN-Valenzkraftkonstante von 5,3 mdyn/Å ergibt (die höchsten SiN-Valenzkraftkonstanten findet man mit 4,3 mdyn/Å in Alkalidisilylamiden 7) — an der Richtigkeit dieser Zuordnung Zweifel aufkommen ließ, führten wir erneute spektroskopische Untersuchungen an SiF $_4 \cdot 2$ NH $_3$ und SiF $_4 \cdot 2$ N $_2$ H $_4$ durch. Da die Schwingungen des SiF $_4$ N $_2$ -Gerüstes unterhalb 750 cm $^{-1}$ erwartet wurden, nahmen wir auch die Ramanspektren der kristallinen Verbindungen auf und erweiterten die IR-Spektren bis 33 cm $^{-1}$.

Um mit Sicherheit die Gerüstschwingungen von den inneren Schwingungen der Liganden abtrennen zu können, stellten wir auch $\mathrm{SiF_4} \cdot 2~\mathrm{ND_3}$ und $\mathrm{SiF_4} \cdot 2~\mathrm{CH_3NH_2}$ dar und nahmen ihre Spektren auf.

⁵ T. S. Piper und E. G. Rochow, J. Amer. Chem. Soc. 76, 4318 (1954).

⁶ V. Gutmann und K. Utvary, Mh. Chem. 90, 706 (1959).

 $^{^7}$ H. B"urger, Abstr. 8th European Congr. Molec. Spectroscopy, Copenhagen 1965, Nr. 329.

Beim Übergang von $SiF_4 \cdot 2$ NH_3 zu $SiF_4 \cdot 2$ ND_3 erwartet man, daß sich die inneren Schwingungen des NH_3 um einen Faktor von ca. 1,35 zu kleineren Wellenzahlen hin verschieben. Die SiF-Schwingungen sollten unverändert bleiben, während je nach Struktur die SiN-Schwingungen um folgende Faktoren langwellig verschoben sein sollten:

cis: v_{as} und v_{s} SiN 1,050 trans: v_{as} 1,036, v_{s} 1,083.

Aus den in Tab. 1 zusammengestellten Schwingungsspektren von $\mathrm{SiF_4} \cdot 2~\mathrm{NH_3},~\mathrm{SiF_4} \cdot 2~\mathrm{ND_3},~\mathrm{SiF_4} \cdot 2~\mathrm{N_2H_4}$ und $\mathrm{SiF_4} \cdot 2~\mathrm{CH_3NH_2},$ die im Bereich der Gerüstdeformationen wegen fehlenden Vergleichsmaterials nur schwierig und wenig detailliert zuzuordnen sind, lassen sich folgende Aussagen ableiten:

Die Deuterierung zeigt, daß bei 920 cm $^{-1}$ im IR-Spektrum des SiF $_4 \cdot 2$ NH $_3$ eine innere Schwingung der NH $_3$ -Gruppe, vermutlich ρ NH $_3$, liegt. Im SiF $_4 \cdot 2$ NH $_3$ ist 440/445 eine SiN-Valenzschwingung. Wegen der geringen Verschiebung wird es sich kaum um ν_s SiN $_2$ der trans-Form (b) handeln, und wegen der Ramanintensität auch nicht ν_{as} der trans-Form sein, obwohl dazu bemerkt werden muß, daß in Kristallen die Auswahlregeln durch Kristallfeldeffekte oft zusammenbrechen.

Wir glauben, daß in $440/445 \,\mathrm{cm^{-1}}$ die beiden orthogonalen SiN-Schwingungen der cis-Form (a) zusammenfallen, und daß die lagekonstanten Schwingungen bei $480 \,\mathrm{cm^{-1}}$ SiF₂-Deformationsschwingungen (im SiF₆²⁻ bei 490 st und 470 st) sind. Auch im Bereich der SiF-Valenzschwingungen, in dem man für (a) 4 Raman- und IR-aktive, für (b) 2 Raman- und 1 IR-aktive, nicht koinzidierende Schwingungen erwartet, spricht das Spektrum eher für die cis-Form.

Strukturen mit Wasserstoffbrücken (c, d) lassen sich wegen der scharfen und oberhalb 3200 cm $^{-1}$ auftretenden NH-Schwingungen ausschließen. Weiterhin spricht die Existenz eines SiF $_4 \cdot 2$ N(CH $_3$) $_3$ -Adduktes gegen Formen, in denen das Donormolekül allein über Wasserstoffbrücken gebunden wird.

Lediglich im N_2H_4 -Addukt treten dem Spektrum zufolge auch Protonenbrücken auf. Bei *cis*-oktaedrischer Anordnung der Liganden enthält das SiF₄ · 2 N_2H_4 2 freie NH_2 -Gruppen, und es sieht so aus, als ob diese $NH_{...}$ F-Brücken wie in

$$\begin{array}{c|c} F & H & F \\ NH_2-NH \dots F & Si \\ NH_2-NH \dots F & F \\ \end{array}$$

oder auch mit den achsialen F-Atomen ausbilden würden.

Für diese Vermutung spricht einerseits die tiefe Lage einer SiF-Valenzschwingung (550/560 cm⁻¹), andererseits die Beobachtung, daß sich das Hydrazinaddukt im Gegensatz zu allen anderen Addukten nicht sublimieren läßt.

Somit scheiden Strukturen wie (c) und (d) für $SiF_4 \cdot 2$ NH_3 aus, und der leichte Zerfall in NH_3 und SiF_4 läßt es kaum möglich erscheinen, daß eine salzartige Struktur (e) mit einem SiF_6^{2-} vorliegt, für die man in polaren Lösungsmitteln eine gewisse Löslichkeit erwartet.

Ein letztes, schwerwiegendes Argument für ein *cis*-oktaedrisches SiF₄ · 2 NH₃ erbrachte sein ¹⁹F-Breitband-Kernresonanzspektrum, das aus 2 verschieden breiten, geringfügig gegeneinander verschobenen Linien besteht, die etwa auf die gleiche Anzahl von F-Atomen zurückgehen.

Aus dem Zusammenspiel aller chemischen und physikalischen Eigenschaften glauben wir schließen zu können, daß im $SiF_4 \cdot 2$ NH_3 und den analogen ND_3 -, N_2H_4 - und CH_3NH_2 -Verbindungen einzelne cis-oktaedrische Moleküle vorliegen. Sie treten zu hochpolymeren Aggregaten zusammen, die nur im Falle des Hydrazin-Adduktes durch Protonenbrücken stabilisiert werden.

In Übereinstimmung mit Aggarwal und Onyszchuk³ nehmen wir an, daß die cis-Struktur hohe Dipol—Dipol-Wechselwirkungen ermöglicht, die für den Zusammenhalt der Molekülgitter mitverantwortlich sind.

Kraftkonstantenrechnungen

Für das cis-oktaedrische $SiF_4 \cdot 2$ NH_3 (NH_3 als Massenpunkt, C_{2v} -Symmetrie) wurden in den Rassen A_1 , B_1 und B_2 Kraftkonstantenrechnungen durchgeführt, deren Ergebnisse innerhalb enger Grenzen auch für die anderen Komplexe Gültigkeit haben.

Im einzelnen wendeten wir die Wilsonsche FG-Matrix-Methode⁸ zur Aufstellung der Schwingungsgleichungen an, die nach einem neuen Iterationsverfahren gelöst wurden⁹.

Folgende Zuordnungen wurden verwendet (F äquatorial, F' achsial):

$\mathbf{A_1}$	$v_{ m s}~{ m SiF}_2$	$680 \; {\rm cm}^{-1}$	B_1	$v_{as} { m SiF}_2$	$638~{ m cm}^{-1}$
	$v_s \operatorname{SiF'}_2$	619		$v_{as} \mathrm{SiN}_2$	443
	$v_s { m SiN}_2$	443		$ ho { m SiF}_2$	353
	$\delta_s \operatorname{SiF}_2$	353		$ ho { m SiN}_2$	284
	$\delta_s \; \mathrm{SiF'}_2$	284	${f B_2}$	ν _{as} SiF' ₂	715
	$\delta_s \operatorname{SiN}_2$	203		$\gamma { m SiN_2}$	203
				$\gamma { m SiF}_2$	480

⁸ E. B. Wilson, J. C. Decius und P. C. Cross, Molecular Vibrations, New York 1955.

⁹ W. Sawodny, A. Fadini und K. Ballein, Spectrochim. Acta [London] 21, 995 (1965).

Tabellė 1. IR- und Ramanspektren von Addukten des SiF4 mit NH3, ND3, N2H4 und CH3NH2

	$\mathrm{SiF_4 \cdot 2~NH_3}$		$SiF_4 \cdot 2 ND_8$		$SiF_4 \cdot 2 N_2H_4$		${\rm SiF_4\cdot 2CH_3NH_2}$	Tuerdning
IR3	IB.	Raman	IR	IR.ª	IR	Raman	IR	STUTION
3500 —	3345 m	3330 st	2480 sst	3395 —	$3275~\mathrm{m}$	3320 sst	3306 st	ν _{as} NH ₃ , NH ₂
$3000 \mathrm{\ stb}$	$3320~\mathrm{m}$	3280 sst	2375 st	$2650 \mathrm{\ stb}$	$3245~\mathrm{m}$	3220~ m st	3225 st	$v_{\rm s}~{ m NH_3},~{ m NH_2}$
	3120 ss		3320 ss*		3020 -		3162 st	vNH Brücken
	3025 -		3110 ss*		$2920~\mathrm{m}$			
							3035 m	
							309.1 m	
		_					9076 at	vСH
							2821 s	
_				1667 m		1650 ss		
				$1646 \mathrm{m}$				$\delta_{\rm as}~{ m NH_3}$
1610 ss		1610 m	1300 s	1616 st		1610 s	1608 st	
	$1585 \mathrm{m}$		1170 m	$1558 \mathrm{m}$	$1578 \mathrm{\ m}$			
			$1120~\mathrm{Sch}$		$1526~\mathrm{m}$	$1530 \mathrm{\ s}$	1504 m	
				1498 st	1483 m			$\delta { m NH}_2$
1435 st								
1408 sst	1385 sst		1060 sst					
		6	1335 s*			1385 ss		$\delta_{\rm s} { m NH_3}$
1387 m	1350 sst	1350 s	1300 ss*			1340 ss		8NH2
							1473 st	
							1428 ss	
							1405 s	$^{\circ}$ CH $_{3}$
							1334 st	
		1220 ss			1200 s		1255 ss	
1070 22	1080 8		700 Sobb	1118 st $1009 m$	1085 cot	m 0601		"HN" - "NH"
	2000		OTTO OF	11000	2007	TOWN THE	1110 st.	OCH,

vNN, vCN	$ ho_{ m NH_3}$	$\rho \rm NH_2 \\ \gamma \rm NH_2$	vSiF	$\delta { m SiF_2}~{ m bzw.}~ { m vSiN}$	NiSiN	$\delta { m SiF}_2$	$\delta { m SiN}_2$
1073 m 1026 m 1009 ss	1111	928 m 825 sst 777 sst	745 m 706 st 640 ss 604 m	482 st 442 s	419 s 407 ss	386 ss 375 ss 304 ss 315 m	267 st 212 sst
975 sst		820 s	660 st 610 ss 560 s	465 s	410 s		
954 st			730 st	478 st	408 s	and the second of	277 sst 222 sst
988 st 978 st 950 m			765 st 740 st				A
	999 m		720 sst 615 m	475 st	431 m	396 ss	286 ss 181 st
	950 s	820 s	680 s 638 st 618 st	480 m	440 st	350 s	
	920 sst		715 sst 619 st	480 m	445 m	356 s	284 m 203 st
	935 s 905 s	835 s	725 st				-

* Verunreinigungen durch H-D-Austausch.

Aus den Rechenerget nissen lassen sich folgende Valenz-kraft-, Wechselwirkungs- und Kopplungskonstanten (in mdyn/Å) ableiten:

$$f \sin 1,506$$
 $f' \sin 0,010$ $f \sin/\sin - 0,023$ $f \sin/\sin 0$
 $f \sin 3,307$ $f' \sin 0,980$ $f \sin 2,595$ $f' \sin 0,155$

Obwohl höchste und niedrigste SiF-Schwingung den achsialen SiF'₂-Schwingungen zugeordnet wurden, fällt f SiF' gegen die Erwartung höher als f SiF aus. Diese Diskrepanz geht ebenso wie der von Null verschiedene Wert von f' SiF vermutlich auf Abweichungen von der regulären Oktaederform zurück, die für die Rechnungen zugrunde gelegt wurde. Solange keine Röntgenstrukturuntersuchung vorliegt, sind die berechneten Kraftkonstanten deshalb nur Näherungswerte. Die Größe der SiN-Valenzkraftkonstanten entspricht jener von koordinativen MeN-Bindungen in Übergangsmetall-Ammin-Komplexen¹⁰ und ist wesentlich geringer als in kovalenten SiN-Verbindungen, für die man SiN-Valenzschwingungen zwischen 500 und 1100 cm⁻¹ und Valenzkraftkonstanten von 3,0-4,3 mdyn/Å findet.

Experimenteller Teil

Die Ausgangssubstanzen SiF₄, NH₃ und CH₃NH₂ standen als Gase zur Verfügung; ND₃ wurde aus Mg₃N₂ und D₂O¹¹ dargestellt, N₂H₄ durch Entwässern von Hydrazinhydrat erhalten 12 .

 $SiF_4 \cdot 2$ NH_3 schied sich aus einem im Quarzrohr bei 300—350° hergestellten SiF₄—NH₃-Gemisch im kälteren Rohrteil als grobkristallines Pulver ab, das durch Vakuumsublimation gereinigt wurde.

 $SiF_4 \cdot 2\ ND_3$ erhielten wir durch Kondensation eines geringen SiF₄-Überschusses bei — 198° auf ND₃, langsames Auftauen des eingeschmolzenen Gemisches auf 20° und Abpumpen des SiF₄ als farbloses Pulver, das mit Luftfeuchtigkeit schnellen H—D-Austausch eingeht (s. a. das IR-Spektrum). Im Gegensatz zum NH₃-Addukt verliert es bei mehrfacher Vakuumsublimation ND₃ und nähert sich der Zusammensetzung SiF₄ · 1,5 ND₃.

 $SiF_4 \cdot 2 N_2H_4$ entstand als kristalliner Niederschlag beim Einleiten von SiF_4 in eine Suspension von N_2H_4 in Petroläther und war nach Trocknen im Vak. analysenrein. Analog stellten wir

 $SiF_4 \cdot 2$ CH_3NH_2 dar, das durch Vakuumsublimation gereinigt wurde.

Die IR-Spektren wurden an KBr-Preßlingen, Paraffinöl- und Hostaflonverreibungen mit einem Perkin-Elmer-221-Gerät im Gitter-NaCl und CsBr-Bereich sowie einem Beckman IR 11 im Bereich von 800—33 cm⁻¹ aufgenommen. Die Ramanspektren der in Kegelrohre eingefüllten Substanzen registrierte ein Cary 81.

¹⁰ T. Shimanouchi und I. Nakagawa, Inorg. Chem. 3, 1805 (1964).

¹¹ G. Brauer, Handb. präpar. anorg. Chemie, Stuttgart 1960, S. 136.

¹² H. Bock, Z. anorg. allgem. Chem. 293, 264 (1957).

Herrn Professor J. Goubeau, Stuttgart, danken wir für die Erlaubnis zur Benutzung von IR 11 und Cary 81, dem Recheninstitut der TH Stuttgart für die Bereitstellung von Rechenzeit an der ER 56. Weiterhin gilt unser Dank der Kalichemie, Hannover, für die Überlassung der SiF4-Druckflasche sowie der Deutschen Forschungsgemeinschaft für ein Stipendium an H. B.

Zu besonderem Dank sind wir Herrn Professor $H.\ Kriegsmann$, Berlin, für Aufnahme und Interpretation des $^{19}{\rm F-Breitband-}KMR{\rm -Spektrums}$ verpflichtet.